Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct.
نویسندگان
چکیده
Fluid shear stress (FSS) is a critical regulator of cation transport in the collecting duct (CD). High-dietary sodium (Na) consumption increases urine flow, Na excretion, and prostaglandin E(2) (PGE(2)) excretion. We hypothesize that increases in FSS elicited by increasing tubular flow rate induce the release of PGE(2) from renal epithelial cells into the extracellular compartment and regulate ion transport. Media retrieved from CD cells exposed to physiologic levels of FSS reveal several fold higher concentration of PGE(2) compared with static controls. Treatment of CD cells with either cyclooxygenase-1 (COX-1) or COX-2 inhibitors during exposure to FSS limited the increase in PGE(2) concentration to an equal extent, suggesting COX-1 and COX-2 contribute equally to FSS-induced PGE(2) release. Cytosolic phospholipase A2 (cPLA2), the principal enzyme that generates the COX substrate arachidonic acid, is regulated by mitogen-activated protein-kinase-dependent phosphorylation and intracellular Ca(2+) concentration ([Ca(2+)](i)), both signaling processes, of which, are activated by FSS. Inhibition of the ERK and p38 pathways reduced PGE(2) release by 53.3 ± 8.4 and 32.6 ± 11.3%, respectively, while antagonizing the JNK pathway had no effect. In addition, chelation of [Ca(2+)](i) limited the FSS-mediated increase in PGE(2) concentration by 47.5 ± 7.5% of that observed in untreated sheared cells. Sheared cells expressed greater phospho-cPLA2 protein abundance than static cells; however, COX-2 protein expression was unaffected (P = 0.064) by FSS. In microperfused CDs, COX inhibition enhanced flow-stimulated Na reabsorption and abolished flow-stimulated potassium (K) secretion, but did not affect ion transport at a slow flow rate, implicating that high tubular flow activates autocrine/paracrine PGE(2) release and, in turn, regulates flow-stimulated cation transport. In conclusion, FSS activates cPLA2 to generate PGE(2) that regulates flow-mediated Na and K transport in the native CD. We speculate that dietary sodium intake modulates tubular flow rate to regulate paracrine PGE(2) release and cation transport in the CD.
منابع مشابه
Effects of biomechanical forces on signaling in the cortical collecting duct (CCD).
An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affect...
متن کاملBiomechanical regulation of cyclooxygenase-2 in the renal collecting duct.
High-dietary sodium (Na), a feature of the Western diet, requires the kidney to excrete ample Na to maintain homeostasis and prevent hypertension. High urinary flow rate, presumably, leads to an increase in fluid shear stress (FSS) and FSS-mediated release of prostaglandin E2 (PGE2) by the cortical collecting duct (CCD) that enhances renal Na excretion. The pathways by which tubular flow biomec...
متن کاملProstaglandin E receptors and the kidney.
Prostaglandin E(2) is a major renal cyclooxygenase metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal hemodynamics and salt and water excretion. The intrarenal distribution and function of EP receptors have been partially characterized, and each receptor has a dist...
متن کاملCollecting duct principal cell transport processes and their regulation.
The principal cell of the kidney collecting duct is one of the most highly regulated epithelial cell types in vertebrates. The effects of hormonal, autocrine, and paracrine factors to regulate principal cell transport processes are central to the maintenance of fluid and electrolyte balance in the face of wide variations in food and water intake. In marked contrast with the epithelial cells lin...
متن کاملContrasting effects of cPLA2 on epithelial Na
Worrell, Roger T., Hui-Fang Bao, Don D. Denson, and Douglas C. Eaton. Contrasting effects of cPLA2 on epithelial Na transport. Am J Physiol Cell Physiol 281: C147–C156, 2001.—Activity of the epithelial Na channel (ENaC) is the limiting step for discretionary Na reabsorption in the cortical collecting duct. Xenopus laevis kidney A6 cells were used to investigate the effects of cytosolic phosphol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 5 شماره
صفحات -
تاریخ انتشار 2012